java.awt.event
Class MouseEvent

java.lang.Object
 java.util.EventObject
 [image: image1.png]

 HYPERLINK "http://java.sun.com/j2se/1.4.2/docs/api/java/awt/AWTEvent.html" \o "class in java.awt" java.awt.AWTEvent
 [image: image2.png]

 HYPERLINK "http://java.sun.com/j2se/1.4.2/docs/api/java/awt/event/ComponentEvent.html" \o "class in java.awt.event" java.awt.event.ComponentEvent
 [image: image3.png]

 HYPERLINK "http://java.sun.com/j2se/1.4.2/docs/api/java/awt/event/InputEvent.html" \o "class in java.awt.event" java.awt.event.InputEvent
 [image: image4.png]

java.awt.event.MouseEvent
All Implemented Interfaces:

Serializable
Direct Known Subclasses:

MenuDragMouseEvent, MouseWheelEvent

public class MouseEvent
extends InputEvent
An event which indicates that a mouse action occurred in a component. A mouse action is considered to occur in a particular component if and only if the mouse cursor is over the unobscured part of the component's bounds when the action happens. Component bounds can be obscurred by the visible component's children or by a menu or by a top-level window. This event is used both for mouse events (click, enter, exit) and mouse motion events (moves and drags).

This low-level event is generated by a component object for:

· Mouse Events

· a mouse button is pressed

· a mouse button is released

· a mouse button is clicked (pressed and released)

· the mouse cursor enters the unobscured part of component's geometry

· the mouse cursor exits the unobscured part of component's geometry

· Mouse Motion Events

· the mouse is moved

· the mouse is dragged

A MouseEvent object is passed to every MouseListener or MouseAdapter object which is registered to receive the "interesting" mouse events using the component's addMouseListener method. (MouseAdapter objects implement the MouseListener interface.) Each such listener object gets a MouseEvent containing the mouse event.

A MouseEvent object is also passed to every MouseMotionListener or MouseMotionAdapter object which is registered to receive mouse motion events using the component's addMouseMotionListener method. (MouseMotionAdapter objects implement the MouseMotionListener interface.) Each such listener object gets a MouseEvent containing the mouse motion event.

When a mouse button is clicked, events are generated and sent to the registered MouseListeners. The state of modal keys can be retrieved using InputEvent.getModifiers() and InputEvent.getModifiersEx(). The button mask returned by InputEvent.getModifiers() reflects only the button that changed state, not the current state of all buttons. (Note: Due to overlap in the values of ALT_MASK/BUTTON2_MASK and META_MASK/BUTTON3_MASK, this is not always true for mouse events involving modifier keys). To get the state of all buttons and modifier keys, use InputEvent.getModifiersEx(). The button which has changed state is returned by getButton()

For example, if the first mouse button is pressed, events are sent in the following order:

 id modifiers button

 MOUSE_PRESSED: BUTTON1_MASK BUTTON1
 MOUSE_RELEASED: BUTTON1_MASK BUTTON1
 MOUSE_CLICKED: BUTTON1_MASK BUTTON1
When multiple mouse buttons are pressed, each press, release, and click results in a separate event.

For example, if the user presses button 1 followed by button 2, and then releases them in the same order, the following sequence of events is generated:

 id modifiers button

 MOUSE_PRESSED: BUTTON1_MASK BUTTON1
 MOUSE_PRESSED: BUTTON2_MASK BUTTON2
 MOUSE_RELEASED: BUTTON1_MASK BUTTON1
 MOUSE_CLICKED: BUTTON1_MASK BUTTON1
 MOUSE_RELEASED: BUTTON2_MASK BUTTON2
 MOUSE_CLICKED: BUTTON2_MASK BUTTON2
If button 2 is released first, the MOUSE_RELEASED/MOUSE_CLICKED pair for BUTTON2_MASK arrives first, followed by the pair for BUTTON1_MASK.

MOUSE_DRAGGED events are delivered to the Component in which the mouse button was pressed until the mouse button is released (regardless of whether the mouse position is within the bounds of the Component). Due to platform-dependent Drag&Drop implementations, MOUSE_DRAGGED events may not be delivered during a native Drag&Drop operation. In a multi-screen environment mouse drag events are delivered to the Component even if the mouse position is outside the bounds of the GraphicsConfiguration associated with that Component. However, the reported position for mouse drag events in this case may differ from the actual mouse position:

· In a multi-screen environment without a virtual device:
The reported coordinates for mouse drag events are clipped to fit within the bounds of the GraphicsConfiguration associated with the Component.

· In a multi-screen environment with a virtual device:
The reported coordinates for mouse drag events are clipped to fit within the bounds of the virtual device associated with the Component.

Since:
1.1

See Also:
MouseAdapter, MouseListener, MouseMotionAdapter, MouseMotionListener, MouseWheelListener, Tutorial: Writing a Mouse Listener, Tutorial: Writing a Mouse Motion Listener, Reference: The Java Class Libraries (update file), Serialized Form

	Field Summary

	static int
	BUTTON1
 Indicates mouse button #1; used by getButton().

	static int
	BUTTON2
 Indicates mouse button #2; used by getButton().

	static int
	BUTTON3
 Indicates mouse button #3; used by getButton().

	static int
	MOUSE_CLICKED
 The "mouse clicked" event.

	static int
	MOUSE_DRAGGED
 The "mouse dragged" event.

	static int
	MOUSE_ENTERED
 The "mouse entered" event.

	static int
	MOUSE_EXITED
 The "mouse exited" event.

	static int
	MOUSE_FIRST
 The first number in the range of ids used for mouse events.

	static int
	MOUSE_LAST
 The last number in the range of ids used for mouse events.

	static int
	MOUSE_MOVED
 The "mouse moved" event.

	static int
	MOUSE_PRESSED
 The "mouse pressed" event.

	static int
	MOUSE_RELEASED
 The "mouse released" event.

	static int
	MOUSE_WHEEL
 The "mouse wheel" event.

	static int
	NOBUTTON
 Indicates no mouse buttons; used by getButton().

	Fields inherited from class java.awt.event.InputEvent

	ALT_DOWN_MASK, ALT_GRAPH_DOWN_MASK, ALT_GRAPH_MASK, ALT_MASK, BUTTON1_DOWN_MASK, BUTTON1_MASK, BUTTON2_DOWN_MASK, BUTTON2_MASK, BUTTON3_DOWN_MASK, BUTTON3_MASK, CTRL_DOWN_MASK, CTRL_MASK, META_DOWN_MASK, META_MASK, SHIFT_DOWN_MASK, SHIFT_MASK

	Fields inherited from class java.awt.event.ComponentEvent

	COMPONENT_FIRST, COMPONENT_HIDDEN, COMPONENT_LAST, COMPONENT_MOVED, COMPONENT_RESIZED, COMPONENT_SHOWN

	Fields inherited from class java.awt.AWTEvent

	ACTION_EVENT_MASK, ADJUSTMENT_EVENT_MASK, COMPONENT_EVENT_MASK, consumed, CONTAINER_EVENT_MASK, FOCUS_EVENT_MASK, HIERARCHY_BOUNDS_EVENT_MASK, HIERARCHY_EVENT_MASK, id, INPUT_METHOD_EVENT_MASK, INVOCATION_EVENT_MASK, ITEM_EVENT_MASK, KEY_EVENT_MASK, MOUSE_EVENT_MASK, MOUSE_MOTION_EVENT_MASK, MOUSE_WHEEL_EVENT_MASK, PAINT_EVENT_MASK, RESERVED_ID_MAX, TEXT_EVENT_MASK, WINDOW_EVENT_MASK, WINDOW_FOCUS_EVENT_MASK, WINDOW_STATE_EVENT_MASK

	Fields inherited from class java.util.EventObject

	source

	Constructor Summary

	MouseEvent(Component source, int id, long when, int modifiers, int x, int y, int clickCount, boolean popupTrigger)
 Constructs a MouseEvent object with the specified source component, type, modifiers, coordinates, and click count.
	

	MouseEvent(Component source, int id, long when, int modifiers, int x, int y, int clickCount, boolean popupTrigger, int button)
 Constructs a MouseEvent object with the specified source component, type, modifiers, coordinates, and click count.
	

	Method Summary

	 int
	getButton()
 Returns which, if any, of the mouse buttons has changed state.

	 int
	getClickCount()
 Returns the number of mouse clicks associated with this event.

	static String
	getMouseModifiersText(int modifiers)
 Returns a String describing the modifier keys and mouse buttons that were down during the event, such as "Shift", or "Ctrl+Shift".

	 Point
	getPoint()
 Returns the x,y position of the event relative to the source component.

	 int
	getX()
 Returns the horizontal x position of the event relative to the source component.

	 int
	getY()
 Returns the vertical y position of the event relative to the source component.

	 boolean
	isPopupTrigger()
 Returns whether or not this mouse event is the popup menu trigger event for the platform.

	 String
	paramString()
 Returns a parameter string identifying this event.

	 void
	translatePoint(int x, int y)
 Translates the event's coordinates to a new position by adding specified x (horizontal) and y (vertical) offsets.

	Methods inherited from class java.awt.event.InputEvent

	consume, getModifiers, getModifiersEx, getModifiersExText, getWhen, isAltDown, isAltGraphDown, isConsumed, isControlDown, isMetaDown, isShiftDown

	Methods inherited from class java.awt.event.ComponentEvent

	getComponent

	Methods inherited from class java.awt.AWTEvent

	getID, setSource, toString

	Methods inherited from class java.util.EventObject

	getSource

	Methods inherited from class java.lang.Object

	clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

	Field Detail

MOUSE_FIRST

public static final int MOUSE_FIRST
The first number in the range of ids used for mouse events.

See Also:
Constant Field Values

MOUSE_LAST

public static final int MOUSE_LAST
The last number in the range of ids used for mouse events.

See Also:
Constant Field Values

MOUSE_CLICKED

public static final int MOUSE_CLICKED
The "mouse clicked" event. This MouseEvent occurs when a mouse button is pressed and released.

See Also:
Constant Field Values

MOUSE_PRESSED

public static final int MOUSE_PRESSED
The "mouse pressed" event. This MouseEvent occurs when a mouse button is pushed down.

See Also:
Constant Field Values

MOUSE_RELEASED

public static final int MOUSE_RELEASED
The "mouse released" event. This MouseEvent occurs when a mouse button is let up.

See Also:
Constant Field Values

MOUSE_MOVED

public static final int MOUSE_MOVED
The "mouse moved" event. This MouseEvent occurs when the mouse position changes.

See Also:
Constant Field Values

MOUSE_ENTERED

public static final int MOUSE_ENTERED
The "mouse entered" event. This MouseEvent occurs when the mouse cursor enters the unobscured part of component's geometry.

See Also:
Constant Field Values

MOUSE_EXITED

public static final int MOUSE_EXITED
The "mouse exited" event. This MouseEvent occurs when the mouse cursor exits the unobscured part of component's geometry.

See Also:
Constant Field Values

MOUSE_DRAGGED

public static final int MOUSE_DRAGGED
The "mouse dragged" event. This MouseEvent occurs when the mouse position changes while a mouse button is pressed.

See Also:
Constant Field Values

MOUSE_WHEEL

public static final int MOUSE_WHEEL
The "mouse wheel" event. This is the only MouseWheelEvent. It occurs when a mouse equipped with a wheel has its wheel rotated.

Since:
1.4

See Also:
Constant Field Values

NOBUTTON

public static final int NOBUTTON
Indicates no mouse buttons; used by getButton().

Since:
1.4

See Also:
Constant Field Values

BUTTON1

public static final int BUTTON1
Indicates mouse button #1; used by getButton().

Since:
1.4

See Also:
Constant Field Values

BUTTON2

public static final int BUTTON2
Indicates mouse button #2; used by getButton().

Since:
1.4

See Also:
Constant Field Values

BUTTON3

public static final int BUTTON3
Indicates mouse button #3; used by getButton().

Since:
1.4

See Also:
Constant Field Values
	Constructor Detail

MouseEvent

public MouseEvent(Component source,

 int id,

 long when,

 int modifiers,

 int x,

 int y,

 int clickCount,

 boolean popupTrigger,

 int button)

Constructs a MouseEvent object with the specified source component, type, modifiers, coordinates, and click count.

Note that passing in an invalid id results in unspecified behavior.

Parameters:
source - the Component that originated the event

id - the integer that identifies the event

when - a long int that gives the time the event occurred

modifiers - the modifier keys down during event (e.g. shift, ctrl, alt, meta) Either extended _DOWN_MASK or old _MASK modifiers should be used, but both models should not be mixed in one event. Use of the extended modifiers is preferred.

x - the horizontal x coordinate for the mouse location

y - the vertical y coordinate for the mouse location

clickCount - the number of mouse clicks associated with event

popupTrigger - a boolean, true if this event is a trigger for a popup menu

button - which of the mouse buttons has changed state. NOBUTTON, BUTTON1, BUTTON2 or BUTTON3.

Throws:

IllegalArgumentException - if if an invalid button value is passed in.

Since:
1.4

MouseEvent

public MouseEvent(Component source,

 int id,

 long when,

 int modifiers,

 int x,

 int y,

 int clickCount,

 boolean popupTrigger)

Constructs a MouseEvent object with the specified source component, type, modifiers, coordinates, and click count.

Note that passing in an invalid id results in unspecified behavior.

Parameters:
source - the Component that originated the event

id - the integer that identifies the event

when - a long int that gives the time the event occurred

modifiers - the modifier keys down during event (e.g. shift, ctrl, alt, meta) Either extended _DOWN_MASK or old _MASK modifiers should be used, but both models should not be mixed in one event. Use of the extended modifiers is preferred.

x - the horizontal x coordinate for the mouse location

y - the vertical y coordinate for the mouse location

clickCount - the number of mouse clicks associated with event

popupTrigger - a boolean, true if this event is a trigger for a popup menu

	Method Detail

getX

public int getX()

Returns the horizontal x position of the event relative to the source component.

Returns:
x an integer indicating horizontal position relative to the component

getY

public int getY()

Returns the vertical y position of the event relative to the source component.

Returns:
y an integer indicating vertical position relative to the component

getPoint

public Point getPoint()

Returns the x,y position of the event relative to the source component.

Returns:
a Point object containing the x and y coordinates relative to the source component

translatePoint

public void translatePoint(int x,

 int y)

Translates the event's coordinates to a new position by adding specified x (horizontal) and y (vertical) offsets.

Parameters:
x - the horizontal x value to add to the current x coordinate position

y - the vertical y value to add to the current y coordinate position

getClickCount

public int getClickCount()

Returns the number of mouse clicks associated with this event.

Returns:
integer value for the number of clicks

getButton

public int getButton()

Returns which, if any, of the mouse buttons has changed state.

Returns:
one of the following constants: NOBUTTON, BUTTON1, BUTTON2 or BUTTON3.

Since:
1.4

isPopupTrigger

public boolean isPopupTrigger()

Returns whether or not this mouse event is the popup menu trigger event for the platform.

Note: Popup menus are triggered differently on different systems. Therefore, isPopupTrigger should be checked in both mousePressed and mouseReleased for proper cross-platform functionality.

Returns:
boolean, true if this event is the popup menu trigger for this platform

getMouseModifiersText

public static String getMouseModifiersText(int modifiers)

Returns a String describing the modifier keys and mouse buttons that were down during the event, such as "Shift", or "Ctrl+Shift". These strings can be localized by changing the awt.properties file.

Parameters:
modifiers - a modifier mask describing the modifier keys and mouse buttons that were down during the event

Returns:
string a text description of the combination of modifier keys and mouse buttons that were down during the event

Since:
1.4

Class TextEvent

java.lang.Object
 [image: image5.png]

 HYPERLINK "http://java.sun.com/j2se/1.4.2/docs/api/java/util/EventObject.html" \o "class in java.util" java.util.EventObject
 [image: image6.png]

 HYPERLINK "http://java.sun.com/j2se/1.4.2/docs/api/java/awt/AWTEvent.html" \o "class in java.awt" java.awt.AWTEvent
 [image: image7.png]

java.awt.event.TextEvent
All Implemented Interfaces:

Serializable

public class TextEvent
extends AWTEvent
A semantic event which indicates that an object's text changed. This high-level event is generated by an object (such as a TextComponent) when its text changes. The event is passed to every TextListener object which registered to receive such events using the component's addTextListener method.

The object that implements the TextListener interface gets this TextEvent when the event occurs. The listener is spared the details of processing individual mouse movements and key strokes Instead, it can process a "meaningful" (semantic) event like "text changed".

Since:
1.1

See Also:
TextComponent, TextListener, Tutorial: Writing a Text Listener, Reference: The Java Class Libraries (update file), Serialized Form

	Field Summary

	static int
	TEXT_FIRST
 The first number in the range of ids used for text events.

	static int
	TEXT_LAST
 The last number in the range of ids used for text events.

	static int
	TEXT_VALUE_CHANGED
 This event id indicates that object's text changed.

	Fields inherited from class java.awt.AWTEvent

	ACTION_EVENT_MASK, ADJUSTMENT_EVENT_MASK, COMPONENT_EVENT_MASK, consumed, CONTAINER_EVENT_MASK, FOCUS_EVENT_MASK, HIERARCHY_BOUNDS_EVENT_MASK, HIERARCHY_EVENT_MASK, id, INPUT_METHOD_EVENT_MASK, INVOCATION_EVENT_MASK, ITEM_EVENT_MASK, KEY_EVENT_MASK, MOUSE_EVENT_MASK, MOUSE_MOTION_EVENT_MASK, MOUSE_WHEEL_EVENT_MASK, PAINT_EVENT_MASK, RESERVED_ID_MAX, TEXT_EVENT_MASK, WINDOW_EVENT_MASK, WINDOW_FOCUS_EVENT_MASK, WINDOW_STATE_EVENT_MASK

	Fields inherited from class java.util.EventObject

	source

	Constructor Summary

	TextEvent(Object source, int id)
 Constructs a TextEvent object.
	

	Method Summary

	 String
	paramString()
 Returns a parameter string identifying this text event.

	Methods inherited from class java.awt.AWTEvent

	consume, getID, isConsumed, setSource, toString

	Methods inherited from class java.util.EventObject

	getSource

	Methods inherited from class java.lang.Object

	clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

	Field Detail

TEXT_FIRST

public static final int TEXT_FIRST
The first number in the range of ids used for text events.

See Also:
Constant Field Values

TEXT_LAST

public static final int TEXT_LAST
The last number in the range of ids used for text events.

See Also:
Constant Field Values

TEXT_VALUE_CHANGED

public static final int TEXT_VALUE_CHANGED
This event id indicates that object's text changed.

See Also:
Constant Field Values
	Constructor Detail

TextEvent

public TextEvent(Object source,

 int id)

Constructs a TextEvent object.

Note that passing in an invalid id results in unspecified behavior.

Parameters:
source - the (TextComponent) object that originated the event

id - an integer that identifies the event type

	Method Detail

paramString

public String paramString()

Returns a parameter string identifying this text event. This method is useful for event-logging and for debugging.

Overrides:
paramString in class AWTEvent
Returns:
a string identifying the event and its attributes

**

Class WindowEvent

java.lang.Object
 [image: image8.png]

 HYPERLINK "http://java.sun.com/j2se/1.4.2/docs/api/java/util/EventObject.html" \o "class in java.util" java.util.EventObject
 [image: image9.png]

 HYPERLINK "http://java.sun.com/j2se/1.4.2/docs/api/java/awt/AWTEvent.html" \o "class in java.awt" java.awt.AWTEvent
 [image: image10.png]

 HYPERLINK "http://java.sun.com/j2se/1.4.2/docs/api/java/awt/event/ComponentEvent.html" \o "class in java.awt.event" java.awt.event.ComponentEvent
 [image: image11.png]

java.awt.event.WindowEvent
All Implemented Interfaces:

Serializable

public class WindowEvent
extends ComponentEvent
A low-level event that indicates that a window has changed its status. This low-level event is generated by a Window object when it is opened, closed, activated, deactivated, iconified, or deiconified, or when focus is transfered into or out of the Window.

The event is passed to every WindowListener or WindowAdapter object which registered to receive such events using the window's addWindowListener method. (WindowAdapter objects implement the WindowListener interface.) Each such listener object gets this WindowEvent when the event occurs.

Since:
JDK1.1

See Also:
WindowAdapter, WindowListener, Tutorial: Writing a Window Listener, Reference: The Java Class Libraries (update file), Serialized Form

	Field Summary

	static int
	WINDOW_ACTIVATED
 The window-activated event type.

	static int
	WINDOW_CLOSED
 The window closed event.

	static int
	WINDOW_CLOSING
 The "window is closing" event.

	static int
	WINDOW_DEACTIVATED
 The window-deactivated event type.

	static int
	WINDOW_DEICONIFIED
 The window deiconified event type.

	static int
	WINDOW_FIRST
 The first number in the range of ids used for window events.

	static int
	WINDOW_GAINED_FOCUS
 The window-gained-focus event type.

	static int
	WINDOW_ICONIFIED
 The window iconified event.

	static int
	WINDOW_LAST
 The last number in the range of ids used for window events.

	static int
	WINDOW_LOST_FOCUS
 The window-lost-focus event type.

	static int
	WINDOW_OPENED
 The window opened event.

	static int
	WINDOW_STATE_CHANGED
 The window-state-changed event type.

	Fields inherited from class java.awt.event.ComponentEvent

	COMPONENT_FIRST, COMPONENT_HIDDEN, COMPONENT_LAST, COMPONENT_MOVED, COMPONENT_RESIZED, COMPONENT_SHOWN

	Fields inherited from class java.awt.AWTEvent

	ACTION_EVENT_MASK, ADJUSTMENT_EVENT_MASK, COMPONENT_EVENT_MASK, consumed, CONTAINER_EVENT_MASK, FOCUS_EVENT_MASK, HIERARCHY_BOUNDS_EVENT_MASK, HIERARCHY_EVENT_MASK, id, INPUT_METHOD_EVENT_MASK, INVOCATION_EVENT_MASK, ITEM_EVENT_MASK, KEY_EVENT_MASK, MOUSE_EVENT_MASK, MOUSE_MOTION_EVENT_MASK, MOUSE_WHEEL_EVENT_MASK, PAINT_EVENT_MASK, RESERVED_ID_MAX, TEXT_EVENT_MASK, WINDOW_EVENT_MASK, WINDOW_FOCUS_EVENT_MASK, WINDOW_STATE_EVENT_MASK

	Fields inherited from class java.util.EventObject

	source

	Constructor Summary

	WindowEvent(Window source, int id)
 Constructs a WindowEvent object.
	

	WindowEvent(Window source, int id, int oldState, int newState)
 Constructs a WindowEvent object with the specified previous and new window states.
	

	WindowEvent(Window source, int id, Window opposite)
 Constructs a WindowEvent object with the specified opposite Window.
	

	WindowEvent(Window source, int id, Window opposite, int oldState, int newState)
 Constructs a WindowEvent object.
	

	Method Summary

	 int
	getNewState()
 For WINDOW_STATE_CHANGED events returns the new state of the window.

	 int
	getOldState()
 For WINDOW_STATE_CHANGED events returns the previous state of the window.

	 Window
	getOppositeWindow()
 Returns the other Window involved in this focus or activation change.

	 Window
	getWindow()
 Returns the originator of the event.

	 String
	paramString()
 Returns a parameter string identifying this event.

	Methods inherited from class java.awt.event.ComponentEvent

	getComponent

	Methods inherited from class java.awt.AWTEvent

	consume, getID, isConsumed, setSource, toString

	Methods inherited from class java.util.EventObject

	getSource

	Methods inherited from class java.lang.Object

	clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

	Field Detail

WINDOW_FIRST

public static final int WINDOW_FIRST
The first number in the range of ids used for window events.

See Also:
Constant Field Values

WINDOW_OPENED

public static final int WINDOW_OPENED
The window opened event. This event is delivered only the first time a window is made visible.

See Also:
Constant Field Values

WINDOW_CLOSING

public static final int WINDOW_CLOSING
The "window is closing" event. This event is delivered when the user attempts to close the window from the window's system menu. If the program does not explicitly hide or dispose the window while processing this event, the window close operation will be cancelled.

See Also:
Constant Field Values

WINDOW_CLOSED

public static final int WINDOW_CLOSED
The window closed event. This event is delivered after the window has been closed as the result of a call to dispose.

See Also:
Constant Field Values

WINDOW_ICONIFIED

public static final int WINDOW_ICONIFIED
The window iconified event. This event is delivered when the window has been changed from a normal to a minimized state. For many platforms, a minimized window is displayed as the icon specified in the window's iconImage property.

See Also:
Frame.setIconImage(java.awt.Image), Constant Field Values

WINDOW_DEICONIFIED

public static final int WINDOW_DEICONIFIED
The window deiconified event type. This event is delivered when the window has been changed from a minimized to a normal state.

See Also:
Constant Field Values

WINDOW_ACTIVATED

public static final int WINDOW_ACTIVATED
The window-activated event type. This event is delivered when the Window becomes the active Window. Only a Frame or a Dialog can be the active Window. The native windowing system may denote the active Window or its children with special decorations, such as a highlighted title bar. The active Window is always either the focused Window, or the first Frame or Dialog that is an owner of the focused Window.

See Also:
Constant Field Values

WINDOW_DEACTIVATED

public static final int WINDOW_DEACTIVATED
The window-deactivated event type. This event is delivered when the Window is no longer the active Window. Only a Frame or a Dialog can be the active Window. The native windowing system may denote the active Window or its children with special decorations, such as a highlighted title bar. The active Window is always either the focused Window, or the first Frame or Dialog that is an owner of the focused Window.

See Also:
Constant Field Values

WINDOW_GAINED_FOCUS

public static final int WINDOW_GAINED_FOCUS
The window-gained-focus event type. This event is delivered when the Window becomes the focused Window, which means that the Window, or one of its subcomponents, will receive keyboard events.

See Also:
Constant Field Values

WINDOW_LOST_FOCUS

public static final int WINDOW_LOST_FOCUS
The window-lost-focus event type. This event is delivered when a Window is no longer the focused Window, which means keyboard events will no longer be delivered to the Window or any of its subcomponents.

See Also:
Constant Field Values

WINDOW_STATE_CHANGED

public static final int WINDOW_STATE_CHANGED
The window-state-changed event type. This event is delivered when a Window's state is changed by virtue of it being iconified, maximized etc.

Since:
1.4

See Also:
Constant Field Values

WINDOW_LAST

public static final int WINDOW_LAST
The last number in the range of ids used for window events.

See Also:
Constant Field Values
	Constructor Detail

WindowEvent

public WindowEvent(Window source,

 int id,

 Window opposite,

 int oldState,

 int newState)

Constructs a WindowEvent object.

Parameters:
source - the Window object that originated the event

id - an integer indicating the type of event.

opposite - the other window involved in the focus or activation change, or null
oldState - previous state of the window for window state change event

newState - new state of the window for window state change event

Since:
1.4

WindowEvent

public WindowEvent(Window source,

 int id,

 Window opposite)

Constructs a WindowEvent object with the specified opposite Window. The opposite Window is the other Window involved in this focus or activation change. For a WINDOW_ACTIVATED or WINDOW_GAINED_FOCUS event, this is the Window that lost activation or focus. For a WINDOW_DEACTIVATED or WINDOW_LOST_FOCUS event, this is the Window that gained activation or focus. If this focus change occurs with a native application, with a Java application in a different VM, or with no other Window, then the opposite Window is null.

Note that passing in an invalid id results in unspecified behavior.

Parameters:
source - the Window object that originated the event

id - WINDOW_ACTIVATED, WINDOW_DEACTIVATED, WINDOW_GAINED_FOCUS, or WINDOW_LOST_FOCUS. It is expected that this constructor will not be used for other WindowEvent types because the opposite Window of such events will always be null
opposite - the other Window involved in the focus or activation change, or null

WindowEvent

public WindowEvent(Window source,

 int id,

 int oldState,

 int newState)

Constructs a WindowEvent object with the specified previous and new window states.

Parameters:
source - the Window object that originated the event

id - WINDOW_STATE_CHANGED event type. It is expected that this constructor will not be used for other WindowEvent types, because the previous and new window states are meaningless for other event types.

oldState - an integer representing the previous window state

newState - an integer representing the new window state

Since:
1.4

WindowEvent

public WindowEvent(Window source,

 int id)

Constructs a WindowEvent object.

Note that passing in an invalid id results in unspecified behavior.

Parameters:
source - the Window object that originated the event

id - an integer indicating the type of event

	Method Detail

getWindow

public Window getWindow()

Returns the originator of the event.

Returns:
the Window object that originated the event

getOppositeWindow

public Window getOppositeWindow()

Returns the other Window involved in this focus or activation change. For a WINDOW_ACTIVATED or WINDOW_GAINED_FOCUS event, this is the Window that lost activation or focus. For a WINDOW_DEACTIVATED or WINDOW_LOST_FOCUS event, this is the Window that gained activation or focus. For any other type of WindowEvent, or if the focus or activation change occurs with a native application, with a Java application in a different VM or context, or with no other Window, null is returned.

Returns:
the other Window involved in the focus or activation change, or null

Since:
1.4

getOldState

public int getOldState()

For WINDOW_STATE_CHANGED events returns the previous state of the window. The state is represented as a bitwise mask.

· NORMAL
Indicates that no state bits are set.

· ICONIFIED

· MAXIMIZED_HORIZ

· MAXIMIZED_VERT

· MAXIMIZED_BOTH
Concatenates MAXIMIZED_HORIZ and MAXIMIZED_VERT.

Returns:
a bitwise mask of the previous window state

Since:
1.4

See Also:
Frame.getExtendedState()

getNewState

public int getNewState()

For WINDOW_STATE_CHANGED events returns the new state of the window. The state is represented as a bitwise mask.

· NORMAL
Indicates that no state bits are set.

· ICONIFIED

· MAXIMIZED_HORIZ

· MAXIMIZED_VERT

· MAXIMIZED_BOTH
Concatenates MAXIMIZED_HORIZ and MAXIMIZED_VERT.

Returns:
a bitwise mask of the new window state

Since:
1.4

See Also:
Frame.getExtendedState()

paramString

public String paramString()

Returns a parameter string identifying this event. This method is useful for event-logging and for debugging.

Overrides:
paramString in class ComponentEvent
Returns:
a string identifying the event and its attributes

