JavaBean

JavaBeans are reusable software components for Java that can be manipulated visually in a builder tool[1]. Practically, they are classes written in the Java programming language conforming to a particular convention. They are used to encapsulate many objects into a single object (the bean), so that the bean can be passed around rather than the individual objects.

The specification by Sun Microsystems defines them as "reusable software components that can be manipulated visually in a builder tool".

JavaBean conventions
In order to function as a JavaBean class, an object class must obey certain conventions about method naming, construction, and behavior. These conventions make it possible to have tools that can use, reuse, replace, and connect JavaBeans.

The required conventions are:

· The class must have a no-argument public constructor. This allows easy instantiation by editing and activation frameworks.

· Its properties must be accessible using get, set and other methods (so called accessor methods) following a standard naming convention. This allows easy automated inspection and updating of bean state by frameworks, many of which include custom editors for various types of properties.

· The class should be serializable. This allows applications and frameworks to reliably save, store and restore bean state in a VM and platform independent fashion.

Because these requirements are largely expressed as conventions rather than by implementing interfaces, some developers view Java Beans as Plain Old Java Objects that follow certain naming conventions.

JavaBean Example
// PersonBean.java
public class PersonBean implements java.io.Serializable {
 private String name;

 private boolean deceased;

 // No-arg constructor (takes no arguments).
 public PersonBean() {
 }
 // Property "name" (note capitalization) readable/writable
 public String getName() {
 return this.name;

 }
 public void setName(String name) {
 this.name = name;

 }
 // Property "deceased"
 // Different syntax for a boolean field (is vs. get)
 public boolean isDeceased() {
 return this.deceased;

 }
 public void setDeceased(boolean deceased) {
 this.deceased = deceased;

 }
}
// TestPersonBean.java
public class TestPersonBean {
 public static void main(String[] args) {
 PersonBean person = new PersonBean();

 person.setName("Bob");

 person.setDeceased(false);

 // Output: "Bob [alive]"
 System.out.print(person.getName());

 System.out.println(person.isDeceased() ? " [deceased]" : " [alive]");

 }
}
Adoption
AWT, Swing, and SWT, the major Java GUI toolkits, use JavaBeans conventions for their components. This allows GUI editors like the Eclipse Visual Editor or the NetBeans GUI Editor to maintain a hierarchy of components and to provide access to their properties via uniformly-named accessors and mutators.

What are JavaBeans ?

Overview
JavaBeans are usual Java classes which adhere to certain coding conventions. which are
· Implements java.io.Serializable interface

· Provides no argument constructor

· Provides getter and setter methods for accessing it's properties

Let's now create a simple JavaBean class.

A simple JavaBean class
Create a new SimpleBean.java file and place it in the /WEB-INF/classes/com/stardeveloper/bean/test/ folder so that the complete path is :

/WEB-INF/classes/com/stardeveloper/bean/test/SimpleBean.java

Now copy the following code and paste it into the SimpleBean.java file we created above :

package com.stardeveloper.bean.test;

public class SimpleBean implements java.io.Serializable {

/* Properties */ private String name = null;

private int age = 0;

/* Empty Constructor */ public SimpleBean() {}

/* Getter and Setter Methods */ public String getName() { return name; }

public void setName(String s) { name = s; }

public int getAge() { return age;
}

public void setAge(int i) { age = i; }
}

Explanation
First line is the package statement : package com.stardeveloper.bean.test;

Next we define our class and make it implement java.io.Serializable interface. Notice that Serializable interface doesn't contain any method. Implementing it just flags to the compiler that we might be serializing this class's objects.

public class SimpleBean implements java.io.Serializable {

Then we declare two variables which hold name and age of a person. These variables inside a JavaBean are called as properties. These properties are private and are thus not directly accessible by other classes. To make them accessible we provide getter and setter methods to get and set their values.

private String name = null;

private int age = 0;

Next we create an empty argument constructor. Keep in mind that the only requirement to a JavaBean is an empty "argument" constructor, not that you shouldn't use constructor at all.

public SimpleBean() {}

Explanation
The convention for writing getter and setter methods for JavaBean's properties is really simple. All you have to do is to take the property name e.g. name. Make it's first character uppercase e.g. Name. Now append 'get' for getter method and 'set' for setter method so that it becomes :

public String getName() {return name;}

public void setName(String s) {
name = s;}

See! how easy it is. Since name variable is of type String, we set the return type of getName() to String. Same is the case with setName() method which takes a parameter of type String because name is of type String.

Next we added four getter and setter methods for private variables (properties) name and age.

public String getName() { return name; }

public void setName(String s) {
name = s;}

public int getAge() {
return age;}

public void setAge(int i) { age = i;}

Now close the class.

}

Compiling JavaBean
You will compile JavaBean like you will compile any other Java class file. After compilation, a SimpleBean.class file will be created.

Summary
We learned that JavaBeans are Java classes which adhere to an extremely simple coding convention. All you have to do is to implement java.io.Serializable interface, use a public empty argument constructor and provide public getter and setter methods to get and set the values of private variables (properties).

Now move over to the next article about calling this JavaBean from within a JSP page. That article will also explain the use of JSP <jsp:useBean>, <jsp:setProperty> and <jsp:getProperty> tags which are provided to you by the JSP specification to make use of JavaBeans.

Introducing Java Beans

The basic idea of the Beans tutorial is to get you to the point where you can quickly create beans. You may want to write new beans from scratch, or you may want to take existing components, applets, or other classes and turn them into beans.

A second goal is to help you understand basic Beans concepts. It can be difficult to assimilate concepts and turn them into pragmatic programming techniques strictly by reading Beans source code, API interfaces, or even the Beans specification.

This tutorial is not a replacement for reading the Beans specification. Rather, it is designed to enhance your comprehension of the specification by providing concrete examples, and step-by-step guidelines for building and using Beans.

After working through sections fo this tutorial, you will find it helpful to reread corresponding sections of the Beans specification. You should also study the example source code provided by the BDK to further your understanding of beans.

Basic Bean Concepts

Individual Java Beans will vary in functionality, but most share certain common defining features.

· Support for introspection allowing a builder tool to analyze how a bean works.

· Support for customization allowing a user to alter the appearance and behavior of a bean.

· Support for events allowing beans to fire events, and informing builder tools about both the events they can fire and the events they can handle.

· Support for properties allowing beans to be manipulated programatically, as well as to support the customization mentioned above.

· Support for persistence allowing beans that have been customized in an application builder to have their state saved and restored. Typically persistence is used with an application builder's save and load menu commands to restore any work that has gone into constructing an application.

While Beans are intended to be used primarily with builder tools, they need not be. Beans can be manually manipulated by text tools through programatic interfaces. All key APIs, including support for events, properties, and persistence, have been designed to be easily read and understood by human programmers as well as by builder tools.

Important Terms

Bean - a reusable software component that can be visually manipulated in builder tools.

Form - The client area or window within a builder tool on which an application is constructed. The form represents the main window that will appear when the final application runs. The term form is used primarily with tools derived from Visual Basic and Delphi.

Property -

Method -

Event -

Event Handler -

Component -

OCX -

VBX -

Active X Control-

