JavaScript is used in millions of Web pages to improve the design, validate forms, detect browsers, create cookies, and much more.

JavaScript is the most popular scripting language on the internet, and works in all major browsers, such as Internet Explorer, Mozilla, Firefox, Netscape, and Opera.

What is JavaScript?

· JavaScript was designed to add interactivity to HTML pages

· JavaScript is a scripting language

· A scripting language is a lightweight programming language

· A JavaScript consists of lines of executable computer code

· A JavaScript is usually embedded directly into HTML pages

· JavaScript is an interpreted language (means that scripts execute without preliminary compilation)

· Everyone can use JavaScript without purchasing a license

Are Java and JavaScript the Same?

NO!

Java and JavaScript are two completely different languages in both concept and design!

Java (developed by Sun Microsystems) is a powerful and much more complex programming language - in the same category as C and C++.

What can a JavaScript Do?

· JavaScript gives HTML designers a programming tool - HTML authors are normally not programmers, but JavaScript is a scripting language with a very simple syntax! Almost anyone can put small "snippets" of code into their HTML pages

· JavaScript can put dynamic text into an HTML page - A JavaScript statement like this: document.write("<h1>" + name + "</h1>") can write a variable text into an HTML page

· JavaScript can react to events - A JavaScript can be set to execute when something happens, like when a page has finished loading or when a user clicks on an HTML element

· JavaScript can read and write HTML elements - A JavaScript can read and change the content of an HTML element

· JavaScript can be used to validate data - A JavaScript can be used to validate form data before it is submitted to a server. This saves the server from extra processing

· JavaScript can be used to detect the visitor's browser - A JavaScript can be used to detect the visitor's browser, and - depending on the browser - load another page specifically designed for that browser

· JavaScript can be used to create cookies - A JavaScript can be used to store and retrieve information on the visitor's computer

How to Put a JavaScript Into an HTML Page

	<html>

<body>

<script type="text/javascript">

document.write("Hello World!");

</script>

</body>

</html>

The code above will produce this output on an HTML page:

	Hello World!

Example Explained

To insert a JavaScript into an HTML page, we use the <script> tag. Inside the <script> tag we use the "type=" attribute to define the scripting language.

So, the <script type="text/javascript"> and </script> tells where the JavaScript starts and ends:

	<html>

<body>

<script type="text/javascript">

...

</script>

</body>

</html>

The word document.write is a standard JavaScript command for writing output to a page.

By entering the document.write command between the <script> and </script> tags, the browser will recognize it as a JavaScript command and execute the code line. In this case the browser will write Hello World! to the page:

	<html>

<body>

<script type="text/javascript">

document.write("Hello World!");

</script>

</body>

</html>

HTML Comments to Handle Simple Browsers

Browsers that do not support JavaScript will display JavaScript as page content.

To prevent them from doing this, and as a part of the JavaScript standard, the HTML comment tag can be used to "hide" the JavaScript. Just add an HTML comment tag <!-- before the first JavaScript statement, and a --> (end of comment) after the last JavaScript statement.

	<html>

<body>
<script type="text/javascript">

<!--

document.write("Hello World!");

//-->

</script>

</body>

</html>

The two forward slashes at the end of comment line (//) is the JavaScript comment symbol. This prevents JavaScript from executing the --> tag.

Where to Put the JavaScript

JavaScripts in a page will be executed immediately while the page loads into the browser. This is not always what we want. Sometimes we want to execute a script when a page loads, other times when a user triggers an event.

Scripts in the head section: Scripts to be executed when they are called, or when an event is triggered, go in the head section. When you place a script in the head section, you will ensure that the script is loaded before anyone uses it.

	<html>

<head>

<script type="text/javascript">

....

</script>
</head>

Scripts in the body section: Scripts to be executed when the page loads go in the body section. When you place a script in the body section it generates the content of the page.

	<html>

<head>

</head>

<body>

<script type="text/javascript">

....

</script>
</body>

Scripts in both the body and the head section: You can place an unlimited number of scripts in your document, so you can have scripts in both the body and the head section.

	<html>

<head>

<script type="text/javascript">

....

</script>
</head>

<body>

<script type="text/javascript">

....

</script>
</body>

Using an External JavaScript

Sometimes you might want to run the same JavaScript on several pages, without having to write the same script on every page.

To simplify this, you can write a JavaScript in an external file. Save the external JavaScript file with a .js file extension.

Note: The external script cannot contain the <script> tag!

To use the external script, point to the .js file in the "src" attribute of the <script> tag:

	<html>

<head>

<script src="xxx.js"></script>
</head>

<body>

</body>

</html>

Note: Remember to place the script exactly where you normally would write the script!

JavaScript is a sequence of statements to be executed by the browser.

JavaScript Statements

A JavaScript statements is a command to the browser. The purpose of the command is to tell the browser what to do.

This JavaScript statement tells the browser to write "Hello Dolly" to the web page:

	document.write("Hello Dolly");

It is normal to add a semicolon at the end of each executable statement. Most people think this is a good programming practice, and most often you will see this in JavaScript examples on the web.

The semicolon is optional (according to the JavaScript standard), and the browser is supposed to interpret the end of the line as the end of the statement. Because of this you will often see examples without the semicolon at the end.

Note: Using semicolons makes it possible to write multiple statements on one line.

JavaScript Code

JavaScript code (or just JavaScript) is a sequence of JavaScript statements.

Each statement is executed by the browser in the sequence they are written.

This example will write a header and two paragraphs to a web page:

	<script type="text/javascript">

document.write("<h1>This is a header</h1>");

document.write("<p>This is a paragraph</p>");

document.write("<p>This is another paragraph</p>");

</script>

Try it yourself.

JavaScript Blocks

JavaScript statements can be grouped together in blocks.

Blocks start with a left curly bracket {, and ends with a right curly bracket }.

The purpose of a block is to make the sequence of statements execute together.

This example will write a header and two paragraphs to a web page:

	<script type="text/javascript">

{

document.write("<h1>This is a header</h1>");

document.write("<p>This is a paragraph</p>");

document.write("<p>This is another paragraph</p>");

}

</script>

JavaScript Variables

As with algebra, JavaScript variables are used to hold values or expressions.

A variable can have a short name, like x, or a more describing name like length.

A JavaScript variable can also hold a text value like in carname="Volvo".

Rules for JavaScript variable names:

· Variable names are case sensitive (y and Y are two different variables)

· Variable names must begin with a letter or the underscore character

NOTE: Because JavaScript is case-sensitive, variable names are case-sensitive

Declaring (Creating) JavaScript Variables

Creating variables in JavaScript is most often referred to as "declaring" variables.

You can declare JavaScript variables with the var statement:

	var x;

var carname;

After the declaration shown above, the variables has no values, but you can assign values to the variables while you declare them:

	var x=5;

var carname="Volvo";

Note: When you assign a text value to a variable, you use quotes around the value.

Assigning Values to JavaScript Variables

You assign values to JavaScript variables with assignment statements:

	x=5;

carname="Volvo";

The variable name is on the left side of the = sign, and the value you want to assign to the variable is on the right.

After the execution of the statements above, the variable x will hold the value 5, and carname will hold the value Volvo.

Assigning Values to Undeclared JavaScript Variables

If you assign values to variables that has not yet been declared, the variables will automatically be declared.

These statements:

	x=5;

carname="Volvo";

have the same effect as:

	var x=5;

var carname="Volvo";

Redeclaring JavaScript Variables

If you redeclare a JavaScript variable, it will not lose its original value.

	var x=5;

var x;

After the execution of the statements above, the variable x will still have the value of 5. The value of x is not reset (or cleared) when you redeclare it.

JavaScript Arithmetic

As with algebra, you can do arithmetic with JavaScript variables:

	y=x-5;

z=y+5;

The operator = is used to assign values.

The operator + is used to add values.

The assignment operator = is used to assign values to JavaScript variables.

The arithmetic operator + is used to add values together.

	y=5;z=2;x=y+z;

The value of x, after the execution of the statements above is 7.

JavaScript Arithmetic Operators

Arithmetic operators are used to perform arithmetic between variables and/or values.

Given that y=5, the table below explains the arithmetic operators:

	Operator
	Description
	Example
	Result

	+
	Addition
	x=y+2
	x=7

	-
	Subtraction
	x=y-2
	x=3

	*
	Multiplication
	x=y*2
	x=10

	/
	Division
	x=y/2
	x=2.5

	%
	Modulus (division remainder)
	x=y%2
	x=1

	++
	Increment
	x=++y
	x=6

	--
	Decrement
	x=--y
	x=4

JavaScript Assignment Operators

Assignment operators are used to assign values to JavaScript variables.

Given that x=10 and y=5, the table below explains the assignment operators:

	Operator
	Example
	Same As
	Result

	=
	x=y
	
	x=5

	+=
	x+=y
	x=x+y
	x=15

	-=
	x-=y
	x=x-y
	x=5

	*=
	x*=y
	x=x*y
	x=50

	/=
	x/=y
	x=x/y
	x=2

	%=
	x%=y
	x=x%y
	x=0

The + Operator Used on Strings

The + operator can also be used to add string variables or text values together.

To add two or more string variables together, use the + operator.

	txt1="What a very";

txt2="nice day";

txt3=txt1+txt2;

After the execution of the statements above, the variable txt3 contains "What a verynice day".

To add a space between the two strings, insert a space into one of the strings:

	txt1="What a very "; txt2="nice day"; txt3=txt1+txt2;

or insert a space into the expression:

	txt1="What a very";

txt2="nice day";

txt3=txt1+" "+txt2;

After the execution of the statements above, the variable txt3 contains:

"What a very nice day"

Adding Strings and Numbers

Look at these examples:

	x=5+5;

document.write(x);

x="5"+"5";

document.write(x);

x=5+"5";

document.write(x);

x="5"+5;

document.write(x);

Try it yourself.

The rule is:

If you add a number and a string, the result will be a string
Comparison and Logical operators are used to test for true or false.

Comparison Operators

Comparison operators are used in logical statements to determine equality or difference between variables or values.

Given that x=5, the table below explains the comparison operators:

	Operator
	Description
	Example

	==
	is equal to
	x==8 is false

	===
	is exactly equal to (value and type)
	x===5 is true
x==="5" is false

	!=
	is not equal
	x!=8 is true

	>
	is greater than
	x>8 is false

	<
	is less than
	x<8 is true

	>=
	is greater than or equal to
	x>=8 is false

	<=
	is less than or equal to
	x<=8 is true

How Can it be Used

Comparison operators can be used in conditional statements to compare values and take action depending on the result:

	if (age<18) document.write("Too young");

You will learn more about the use of conditional statements in the next chapter of this tutorial.

Logical Operators

Logical operators are used in determine the logic between variables or values.

Given that x=6 and y=3, the table below explains the logical operators:

	Operator
	Description
	Example

	&&
	and
	(x < 10 && y > 1) is true

	||
	or
	(x==5 || y==5) is false

	!
	not
	!(x==y) is true

Conditional Operator

JavaScript also contains a conditional operator that assigns a value to a variable based on some condition.

Syntax

	variablename=(condition)?value1:value2

Example

	greeting=(visitor=="PRES")?"Dear President ":"Dear ";

If the variable visitor has the value of "PRES", then the variable greeting will be assigned the value "Dear President " else it will be assigned "Dear".

Conditional Statements

Very often when you write code, you want to perform different actions for different decisions. You can use conditional statements in your code to do this.

In JavaScript we have the following conditional statements:

· if statement - use this statement if you want to execute some code only if a specified condition is true

· if...else statement - use this statement if you want to execute some code if the condition is true and another code if the condition is false

· if...else if....else statement - use this statement if you want to select one of many blocks of code to be executed

· switch statement - use this statement if you want to select one of many blocks of code to be executed

If Statement

You should use the if statement if you want to execute some code only if a specified condition is true.

Syntax

	if (condition)

{

code to be executed if condition is true
}

Note that if is written in lowercase letters. Using uppercase letters (IF) will generate a JavaScript error!

Example 1

	<script type="text/javascript">

//Write a "Good morning" greeting if

//the time is less than 10

var d=new Date();

var time=d.getHours();

if (time<10)

{

document.write("Good morning");

}

</script>

Example 2

	<script type="text/javascript">

//Write "Lunch-time!" if the time is 11

var d=new Date();

var time=d.getHours();

if (time==11)

{

document.write("Lunch-time!");

}

</script>

Note: When comparing variables you must always use two equals signs next to each other (==)!

Notice that there is no ..else.. in this syntax. You just tell the code to execute some code only if the specified condition is true.

If...else Statement

If you want to execute some code if a condition is true and another code if the condition is not true, use the if....else statement.

Syntax

	if (condition)

{

code to be executed if condition is true
}

else

{

code to be executed if condition is not true
}

Example

	<script type="text/javascript">

//If the time is less than 10,

//you will get a "Good morning" greeting.

//Otherwise you will get a "Good day" greeting.

var d = new Date();

var time = d.getHours();

if (time < 10)

{

document.write("Good morning!");

}

else

{

document.write("Good day!");

}

</script>

If...else if...else Statement

You should use the if....else if...else statement if you want to select one of many sets of lines to execute.

Syntax

	if (condition1)

{

code to be executed if condition1 is true
}

else if (condition2)

{

code to be executed if condition2 is true
}

else

{

code to be executed if condition1 and

condition2 are not true
}

Example

	<script type="text/javascript">

var d = new Date()

var time = d.getHours()

if (time<10)

{

document.write("Good morning");

}

else if (time>10 && time<16)

{

document.write("Good day");

}

else

{

document.write("Hello World!");

}

</script>

JavaScript Functions

To keep the browser from executing a script when the page loads, you can put your script into a function.

A function contains code that will be executed by an event or by a call to that function.

You may call a function from anywhere within the page (or even from other pages if the function is embedded in an external .js file).

Functions can be defined both in the <head> and in the <body> section of a document. However, to assure that the function is read/loaded by the browser before it is called, it could be wise to put it in the <head> section.

Example

	<html>

<head>

<script type="text/javascript">

function displaymessage()

{

alert("Hello World!");

}

</script>

</head>

<body>

<form>

<input type="button" value="Click me!"

onclick="displaymessage()" >

</form>

</body>

</html>

If the line: alert("Hello world!!") in the example above had not been put within a function, it would have been executed as soon as the line was loaded. Now, the script is not executed before the user hits the button. We have added an onClick event to the button that will execute the function displaymessage() when the button is clicked.

You will learn more about JavaScript events in the JS Events chapter.

How to Define a Function

The syntax for creating a function is:

	function functionname(var1,var2,...,varX)

{

some code
}

var1, var2, etc are variables or values passed into the function. The { and the } defines the start and end of the function.

Note: A function with no parameters must include the parentheses () after the function name:

	function functionname()

{

some code
}

Note: Do not forget about the importance of capitals in JavaScript! The word function must be written in lowercase letters, otherwise a JavaScript error occurs! Also note that you must call a function with the exact same capitals as in the function name.

The return Statement

The return statement is used to specify the value that is returned from the function.

So, functions that are going to return a value must use the return statement.

Example

The function below should return the product of two numbers (a and b):

	function prod(a,b) { x=a*b; return x; }

When you call the function above, you must pass along two parameters:

	product=prod(2,3);

The returned value from the prod() function is 6, and it will be stored in the variable called product

JavaScript Loops

Very often when you write code, you want the same block of code to run over and over again in a row. Instead of adding several almost equal lines in a script we can use loops to perform a task like this.

In JavaScript there are two different kind of loops:

· for - loops through a block of code a specified number of times

· while - loops through a block of code while a specified condition is true

The for Loop

The for loop is used when you know in advance how many times the script should run.

Syntax
	for (var=startvalue;var<=endvalue;var=var+increment)

{

 code to be executed
}

Example
Explanation: The example below defines a loop that starts with i=0. The loop will continue to run as long as i is less than, or equal to 10. i will increase by 1 each time the loop runs.

Note: The increment parameter could also be negative, and the <= could be any comparing statement.

	<html>

<body>

<script type="text/javascript">

var i=0;

for (i=0;i<=10;i++)

{

document.write("The number is " + i);

document.write("
");

}

</script>

</body>

</html>

Result
	The number is 0

The number is 1

The number is 2

The number is 3

The number is 4

The number is 5

The number is 6

The number is 7

The number is 8

The number is 9

The number is 10

Example
Explanation: The example below defines a loop that starts with i=0. The loop will continue to run as long as i is less than, or equal to 10. i will increase by 1 each time the loop runs.

	<html>

<body>

<script type="text/javascript">

var i=0;

while (i<=10)

{

document.write("The number is " + i);

document.write("
");

i=i+1;

}

</script>

</body>

</html>

Result
	The number is 0

The number is 1

The number is 2

The number is 3

The number is 4

The number is 5

The number is 6

The number is 7

The number is 8

The number is 9

The number is 10

Events

By using JavaScript, we have the ability to create dynamic web pages. Events are actions that can be detected by JavaScript.

Every element on a web page has certain events which can trigger JavaScript functions. For example, we can use the onClick event of a button element to indicate that a function will run when a user clicks on the button. We define the events in the HTML tags.

Examples of events:

· A mouse click

· A web page or an image loading

· Mousing over a hot spot on the web page

· Selecting an input box in an HTML form

· Submitting an HTML form

· A keystroke

Note: Events are normally used in combination with functions, and the function will not be executed before the event occurs!

onload and onUnload

The onload and onUnload events are triggered when the user enters or leaves the page.

The onload event is often used to check the visitor's browser type and browser version, and load the proper version of the web page based on the information.

Both the onload and onUnload events are also often used to deal with cookies that should be set when a user enters or leaves a page. For example, you could have a popup asking for the user's name upon his first arrival to your page. The name is then stored in a cookie. Next time the visitor arrives at your page, you could have another popup saying something like: "Welcome John Doe!".

onFocus, onBlur and onChange

The onFocus, onBlur and onChange events are often used in combination with validation of form fields.

Below is an example of how to use the onChange event. The checkEmail() function will be called whenever the user changes the content of the field:

	<input type="text" size="30"

id="email" onchange="checkEmail()">

onSubmit

The onSubmit event is used to validate ALL form fields before submitting it.

Below is an example of how to use the onSubmit event. The checkForm() function will be called when the user clicks the submit button in the form. If the field values are not accepted, the submit should be cancelled. The function checkForm() returns either true or false. If it returns true the form will be submitted, otherwise the submit will be cancelled:

	<form method="post" action="xxx.htm"

onsubmit="return checkForm()">

onMouseOver and onMouseOut

onMouseOver and onMouseOut are often used to create "animated" buttons.

Below is an example of an onMouseOver event. An alert box appears when an onMouseOver event is detected:

	<a href="http://www.w3schools.com"

onmouseover="alert('An onMouseOver event');return false">

Image Map

<html>

<head>

<script type="text/javascript">

function writeText(txt)

{

document.getElementById("desc").innerHTML=txt;

}

</script>

</head>

<body>

<map id ="planetmap" name="planetmap">

<area shape ="rect" coords ="0,0,82,126"

onMouseOver="writeText('The Sun and the gas giant planets like Jupiter are by far the largest objects in our Solar System.')"

href ="sun.htm" target ="_blank" alt="Sun" />

<area shape ="circle" coords ="90,58,3"

onMouseOver="writeText('The planet Mercury is very difficult to study from the Earth because it is always so close to the Sun.')"

href ="mercur.htm" target ="_blank" alt="Mercury" />
[image: image1.png]

Simple Timing

<html>

<head>

<script type="text/javascript">

function timedMsg()

{

var t=setTimeout("alert('5 seconds!')",5000);

}

</script>

</head>

<body>

<form>

<input type="button" value="Display timed alertbox!" onClick = "timedMsg()">

</form>

<p>Click on the button above. An alert box will be displayed after 5 seconds.</p>

</body>

</html>

Clock

<html>

<head>

<script type="text/javascript">

function startTime()

{

var today=new Date();

var h=today.getHours();

var m=today.getMinutes();

var s=today.getSeconds();

// add a zero in front of numbers<10

m=checkTime(m);

s=checkTime(s);

document.getElementById('txt').innerHTML=h+":"+m+":"+s;

t=setTimeout('startTime()',500);

}

function checkTime(i)

{

if (i<10)

 {

 i="0" + i;

 }

return i;

}

</script>

</head>

<body onload="startTime()">

<div id="txt"></div>

</body>

</html>

