
Synchronization in Java

Nelson Padua-Perez
Bill Pugh

Department of Computer Science
University of Maryland, College Park

Synchronization Overview

Unsufficient atomicity
Data races
Locks
Deadlock
Wait / Notify

Unsufficient atomicity

Very frequently, you will want a sequence of
actions to be performed atomically or
indivisibly

not interrupted or disturbed by actions by any other
thread

x++ isn’t an atomic operation
it is a read followed by a write

Can be a intermittent error
depends on exact interleaving

Insuffient Atomicity Example
public class InsuffientAtomicity implements Runnable {
 static int x = 0;
 public void run() {
 int tmp = x;

 x = tmp+1;
 }
 public static void main(String[] args) {
 for (int i = 0; i < 3; i++)
 new Thread(new InsuffientAtomicity ()).start();
 System.out.println(x); // may not be 3
 }
}

Data Race

Definition
Concurrent accesses to same shared variable,
where at least one access is a write

variable isn’t volatile

Can expose all sorts of really weird stuff the
compiler and processor are doing to improve
performance

Quiz Time

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

Can this result in i = 0 and j = 0?

start threads

Answer: Yes!

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

How can i = 0 and j = 0?

start threads

How Can This Happen?

Compiler can reorder statements
Or keep values in registers

Processor can reorder them
On multi-processor, values not synchronized to
global memory
The memory model is designed to allow
aggressive optimization

including optimizations no one has implemented yet
Good for performance

bad for your intuition about insufficiently
synchronized code

Synchronization

Uses
Marks when a block of code must not be interleaved
with code executed by another thread
Marks when information can/must flow between
threads

Notes
Incurs a small amount of runtime overhead

if only used where you might need to
communicate between threads, not significant
used everywhere, can add up

Lock

Definition
Entity can be held by only one thread at a time

Properties
A type of synchronization
Used to enforce mutual exclusion
Thread can acquire / release locks
Thread will wait to acquire lock (stop execution)

If lock held by another thread

Synchronized Objects in Java

All Java objects provide locks
Apply synchronized keyword to object
Mutual exclusion for code in synchronization block

Example
 Object x = new Object();
 void foo() {
 synchronized(x) { // acquire lock on x on entry
 ... // hold lock on x in block
 } // release lock on x on exitbl

oc
k

Synchronized Methods In Java

Java methods also provide locks
Apply synchronized keyword to method
Mutual exclusion for entire body of method
Synchronizes on object invoking method

Example
 synchronized void foo() { …code… }

 // shorthand notation for
 void foo() {
 synchronized (this) { …code… }
 }

block

Synchronized Methods In Java

Locks in Java
Properties

No other thread can get lock on x while in block
Does not protect fields of x

except by convention
other threads can access/update fields
but can’t obtain lock on x

By convention, lock x to obtain exclusive access to x
Locked block of code ⇒ critical section

Lock is released when block terminates
No matter how the block terminates:

End of block reached
Exit block due to return, continue, break
Exception thrown

Using synchronization
public class UseSynchronization implements Runnable {
 static int x = 0;

static Object lock = new Object();
 public void run() {

 synchronized(lock) {
 int tmp = x;

 x = tmp+1;
 }

 }
}

Questions

What would happen if the lock field were not
static?
Why don’t we just make the run method
synchronized?
Why don’t we just synchronize on x?

Not sharing same lock
public class NotSharingLock implements Runnable {
 static int x = 0;

Object lock = new Object();
 public void run() {

 synchronized(lock) {
 int tmp = x;

 x = tmp+1;
 }

 }
}

Synchronization Issues

Use same lock to provide mutual exclusion
Ensure atomic transactions
Avoiding deadlock

Issue 1) Using Same Lock

Potential problem
Mutual exclusion depends on threads acquiring
same lock
No synchronization if threads have different locks

Example
 void run() {
 Object o = new Object(); // different o per thread
 synchronized(o) {
 … // potential data race
 }
 }

Locks in Java
Single lock for all threads (mutual exclusion)

Separate locks for each thread (no synchronization)

Potential problem
Sequence of actions must be performed as single
atomic transaction to avoid data race
Ensure lock is held for duration of transaction

Example
 synchronized(lock) {
 int tmp = x; // both statements must

 // be executed together
 x = tmp; // by single thread
 }

Issue 2) Atomic Transactions

Using synchronization
public class InsuffientAtomicity implements

Runnable {
 static int x = 0;

static Object lock = new Object();
 public void run() {

 int tmp;
 synchronized(lock) {
 tmp = x;

 };
 synchronized(lock) {
 x = tmp+1;

 }
 }

Issue 3) Avoiding Deadlock

In general, want to be careful about performing
any operations that might take a long time
while holding a lock
What could take a really long time?

getting another lock

Particularly if you get deadlock

Deadlock Example 1

Thread1() { Thread2() {
 synchronized(a) { synchronized(b) {
 synchronized(b) { synchronized(a) {
 … …
 } }
 } }
} }

// Thread1 holds lock for a, waits for b
// Thread2 holds lock for b, waits for a

Deadlock Example 2
void moveMoney(Account a, Account b, int amount) {
 synchronized(a) {
 synchronized(b) {

 a.debit(amount);
 b.credit(amount);
 }
 }
}

Thread1() { moveMoney(a,b,10); }
// holds lock for a, waits for b

Thread2() { moveMoney(b,a,100); }
// holds lock for b, waits for a

Waiting for Godot

Sometimes, you need to wait for another thread
else to do something before you can do
something

Abstract Data Type – Buffer

Buffer
Transfers items
from producers to
consumers
Very useful in
multithreaded
programs
Synchronization
needed to prevent
multiple consumers
removing same item

Buffer usage

Producer thread
calls buffer.add(o)
adds o to the buffer

Consumer thread
calls buffer.remove()
if object in buffer, removes and returns it
otherwise, waits until object is available to remove

Buffer Implementation
public class Buffer {
 private LinkedList objects = new LinkedList();
 public synchronized add(Object x) {
 objects.add(x);
 }
 public synchronized Object remove() {
 while (objects.isEmpty()) {
 ; // waits for more objects to be added
 }
 return objects.removeFirst();
 }
} // if empty buffer, remove() holds lock and waits
 // prevents add() from working ⇒ deadlock

Eliminating Deadlock
public class Buffer {
 private Object [] myObjects;
 private int numberObjects = 0;
 public synchronized add(Object x) {
 objects.add(x);
 }
 }
 public Object remove() {
 while (true) { // waits for more objects to be added
 synchronize(this) {
 if (!objects.isEmpty()) {

 return objects.removeFirst(); }
 }
 }
 } // if empty buffer, remove() gives

 // up lock for a moment

Works barely, if at all

Might work
But waiting thread is going to be running a full
tilt, twiddling its thumbs, doing nothing

burning up your battery life
keeping the producer from getting the CPU time it
needs to quickly produce a new object

Issue 4) Using Wait & Notify

Potential problem
Threads actively waiting consume resources

Solution
Can wait to be notified
Use Thread class methods wait(), notifyAll()

notify() is for advanced use and tricky to get right;
avoid it

Thread Class Wait & Notify Methods
wait()

Invoked on object
must already hold lock on that object
gives up lock on that object
goes into a wait state

notifyAll()
Invoked on object
must already hold lock on that object
all threads waiting on that object are woken up

but they all gave up their lock when they performed wait
will have to regain lock before then can run
thread performing notify holds lock at the moment

Using Wait & Notify

State transitions

Using Wait and NotifyAll
public class Buffer {
 private LinkedList objects = new LinkedList();
 public synchronized add(Object x) {
 objects.add(x);

 this.notifyAll();
 }
 public synchronized Object remove() {
 while (objects.isEmpty()) {

this.wait();
 }
 return objects.removeFirst();
 }
}

Actually, that won’t compile

the wait() method is declared to throw an
InterruptedException

a checked exception

You rarely have situations where a wait will
throw an InterruptedException

but the compiler forces you to deal with it

Using Wait and NotifyAll
public class Buffer {
 private LinkedList objects = new LinkedList();
 public synchronized add(Object x) {
 objects.add(x);

 this.notifyAll();
 }
 public synchronized Object remove() {
 while (objects.isEmpty()) {

try {
 this.wait();
 } catch (InterruptedException e) {}

 }
 return objects.removeFirst();
 }
}

