What Is the Java Programming Language?

The Java programming language is:

• A programming language

• A development environment

• An application environment

• A deployment environment

• Similar in syntax to C++; similar in semantics to SmallTalk

• Used for developing both applets and applications
Primary Goals of the Java

• Provides an easy-to-use language by:

• Avoiding the pitfalls of other languages

• Being object-oriented

• Enabling users to create streamlined and clear code

Provides an interpreted environment for:

• Improved speed of development

• Code portability

• Enables users to run more than one thread of activity

• Supports dynamically changing programs during runtime

• Furnishes better security
The following features fulfill these goals:

• The Java virtual machine (JVM)

• Garbage collection

• Code security

The Java Virtual Machine

• Provides hardware platform specifications

• Reads compiled byte codes that are platform independent

• Is implemented as software or hardware

• Is implemented in a Java technology development tool or a Web browser

JVM provides definitions for the:

• Instruction set (central processing unit [CPU])

• Register set

• Class file format

• Stack

• Garbage-collected heap

• Memory area

Bytecodes that maintain proper type discipline from the  code.

• The majority of type checking is done when the code is compiled.

• Every Sun approved implementation of the JVM must be able to run any compliant class file.

Garbage Collection

• Allocated memory that is no longer needed should be deallocated

• In other languages, deallocation is the programmer’s responsibility

• The Java programming language provides a systemlevel thread to track memory   

    allocation

Garbage collection:

• Checks for and frees memory no longer needed

• Is done automatically

• Can vary dramatically across JVM implementations

Java Runtime Environment

• Performs three main tasks:

• Loads code

• Verifies code

• Executes code

Class Loader

• Loads all classes necessary for the execution of a  program

• Maintains classes of the local file system in separate "namespaces"

• Prevents spoofing 

Bytecode Verifier  Ensures that:

• The code adheres to the JVM specification

• The code does not violate system integrity

• The code causes no operand stack overflows or  underflows

• The parameter types for all operational code are correct

• No illegal data conversions (the conversion of integers to pointers) have occurred

The Source File Layout  Contains three "top-level" elements:

• An optional package declaration

• Any number of import statements

• Class and interface declarations
Using the Java API Documentation

• A set of hypertext markup language (HTML) files provides information about the API

• One package contains hyperlinks to information on all of the classes

• A class document includes the class hierarchy, a description of the class, a list of member variables, a list of constructors, and so on

Inner Classes

• Added to JDK 1.1

• Allow a class definition to be placed inside another class definition

• Group classes that logically belong together

• Have access to their enclosing class’s scope

Properties of Inner Classes

• You can use the class name only within the defined scope, except when used in a qualified name.

The name of the inner class must differ from the enclosing class.

• The inner class can be defined inside a method Any variable, either a local variable or a formal parameter, can be accessed by methods within an inner class provided the variable is marked as final.

• The inner class can use both class and instance variables of enclosing classes and local variables of enclosing blocks.

• The inner class can be defined as abstract.

• Only inner classes can be declared as private or protected.

• An inner class can act as an interface implemented by another inner class.

• Inner classes that are declared static automatically become top-level classes.

• Inner classes cannot declare any static members; only top-level classes can declare static members.

An inner class wanting to use a static must declare static in the top-level class.

